Search results for " stem-cells"

showing 9 items of 9 documents

Bone Marrow Concentrate and Bovine Bone Mineral for Sinus Floor Augmentation

2011

Purpose: The purpose of this work was to evaluate the potential of substituting autogenous bone (AB) by bone marrow aspirate concentrate (BMAC). Both AB and BMAC were tested in combination with a bovine bone mineral (BBM) for their ability of new bone formation (NBF) in a multicentric, randomized, controlled, clinical and histological noninferiority trial.Materials and Methods: Forty-five severely atrophied maxillary sinus from 26 patients were evaluated in a partial cross-over design. As test arm, 34 sinus of 25 patients were augmented with BBM and BMAC containing mesenchymal stem cells. Eleven control sinus from 11 patients were augmented with a mixture of 70% BBM and 30% AB. Biopsies wer…

AdultMalemedicine.medical_specialtySinus Floor AugmentationOSTEOGENIC DIFFERENTIATIONBone RegenerationMaxillary sinusBiomedical EngineeringSinus Floor AugmentationBioengineeringBiochemistryMAXILLARY SINUSlaw.inventionMESENCHYMAL STEM-CELLSBIO-OSSBiomaterialsRandomized controlled trialTISSUE-ENGINEERED BONEBone MarrowOsteogenesislawmedicineAnimalsHumansSingle-Blind MethodSinus (anatomy)AgedIMPLANT PLACEMENTHYDROXYAPATITE CERAMICSBone TransplantationIntention-to-treat analysisPOROUS HYDROXYAPATITEbusiness.industryIN-VITROMiddle AgedSurgeryAUTOGENOUS BONEImplant placementBovine bonemedicine.anatomical_structureBone SubstitutesCattleFemaleBone marrowbusinessTissue Engineering. Part A
researchProduct

Heart valve tissue engineering: how far is the bedside from the bench?

2015

Heart disease, including valve pathologies, is the leading cause of death worldwide. Despite the progress made thanks to improving transplantation techniques, a perfect valve substitute has not yet been developed: once a diseased valve is replaced with current technologies, the newly implanted valve still needs to be changed some time in the future. This situation is particularly dramatic in the case of children and young adults, because of the necessity of valve growth during the patient's life. Our review focuses on the current status of heart valve (HV) therapy and the challenges that must be solved in the development of new approaches based on tissue engineering. Scientists and physicia…

Aortic valveHeart diseaseSwine030204 cardiovascular system & hematology0302 clinical medicineHeart valve tissue engineeringHyaluronic AcidChildProsthetic valve0303 health sciencesMARROW-DERIVED CELLSTissue ScaffoldsFetal BloodHeart Valves3. Good healthmedicine.anatomical_structureHeart Valve ProsthesisCardiologyMolecular MedicineCollagenmedicine.medical_specialtyPULMONARY VALVEBONE-MARROWInduced Pluripotent Stem CellsVENTRICULAR OUTFLOW TRACTMESENCHYMAL STEM-CELLS03 medical and health sciencesTissue scaffoldsInternal medicineEXTRACELLULAR-MATRIXmedicineAnimalsHumansHeart valveIntensive care medicineENDOTHELIAL PROGENITOR CELLSMolecular Biology030304 developmental biologyBioprosthesisAORTIC-VALVEFibrinSheepTissue Engineeringbusiness.industryEndothelial Cellsmedicine.diseaseTransplantationPulmonary valveUMBILICAL-CORD BLOOD1182 Biochemistry cell and molecular biologybusinessHUMAN AMNIOTIC-FLUIDExpert Reviews in Molecular Medicine
researchProduct

Applying extracellular vesicles based therapeutics in clinical trials - an ISEV position paper.

2015

Extracellular vesicles (EVs), such as exosomes and microvesicles, are released by different cell types and participate in physiological and pathophysiological processes. EVs mediate intercellular communication as cell-derived extracellular signalling organelles that transmit specific information from their cell of origin to their target cells. As a result of these properties, EVs of defined cell types may serve as novel tools for various therapeutic approaches, including (a) anti-tumour therapy, (b) pathogen vaccination, (c) immune-modulatory and regenerative therapies and (d) drug delivery. The translation of EVs into clinical therapies requires the categorization of EV-based therapeutics …

Bioquímica clínicaMedizinISCHEMIA-REPERFUSION INJURYBioinformaticsimmunology; neurobiology; haematology; stem cells; tissue regeneration; tumour vaccination; regulationimmunology0302 clinical medicineClinical trialsClinical investigationVERSUS-HOST-DISEASEMedicine and Health SciencesFIELD-FLOW FRACTIONATIONMedicineImmunologiahaematology; immunology; neurobiology; regulation; stem cells; tissue regeneration; tumour vaccinationmedia_common0303 health scienceslcsh:CytologyOUTER-MEMBRANE VESICLESneurobiologyregulationHematologyBiologia experimental3. Good healthTUMOR-DERIVED EXOSOMES030220 oncology & carcinogenesistumour vaccinationDrug deliveryhaematologyPosition PaperCèl·lules mareNeurobiologiaHistologyMedicina InvestigacióCèl·lulesNANOPARTICLE TRACKING ANALYSIStissue regenerationExtracellular vesiclesMESENCHYMAL STEM-CELLS03 medical and health sciencesstem cellsJournal Articlemedia_common.cataloged_instanceREGULATORY T-CELLSEuropean unionlcsh:QH573-671ENDOTHELIAL PROGENITOR CELLSHematologia030304 developmental biologybusiness.industryCell BiologyMicrovesiclesClinical trialPosition paperPharmaceutical manufacturingUMBILICAL-CORD BLOODbusinessNeuroscienceAssaigs clínics
researchProduct

miR-133a Enhances the Protective Capacity of Cardiac Progenitors Cells after Myocardial Infarction

2014

Summary miR-133a and miR-1 are known as muscle-specific microRNAs that are involved in cardiac development and pathophysiology. We have shown that both miR-1 and miR-133a are early and progressively upregulated during in vitro cardiac differentiation of adult cardiac progenitor cells (CPCs), but only miR-133a expression was enhanced under in vitro oxidative stress. miR-1 was demonstrated to favor differentiation of CPCs, whereas miR-133a overexpression protected CPCs against cell death, targeting, among others, the proapoptotic genes Bim and Bmf. miR-133a-CPCs clearly improved cardiac function in a rat myocardial infarction model by reducing fibrosis and hypertrophy and increasing vasculari…

Cardiac function curveProgrammed cell deathMyocardial InfarctionGene ExpressionCardiomegalyBiologyBiochemistryArticleMuscle hypertrophyParacrine signallingDownregulation and upregulationmiR-133a; Cardiac Progenitors Cells; Myocardial InfarctionFibrosisREGENERATIONmicroRNAGeneticsmedicineMyocyteAnimalsRNA MessengerOXIDATIVE STRESSlcsh:QH301-705.5ENGINEERED HEART-TISSUElcsh:R5-920Gene Expression ProfilingMICRORNAComputational BiologyCell BiologyMUSCLEmedicine.disease3. Good healthCell biologyRatsAPOPTOSISHYPERTROPHYMicroRNAsDIFFERENTIATIONlcsh:Biology (General)ImmunologyGROWTHRNA Interferencelcsh:Medicine (General)EMBRYONIC STEM-CELLSMyoblasts CardiacDevelopmental BiologyStem Cell Reports
researchProduct

Loss of histone macroH2A1 in hepatocellular carcinoma cells promotes paracrine-mediated chemoresistance and CD4+CD25+FoxP3+ regulatory T cells activa…

2020

Rationale: Loss of histone macroH2A1 induces appearance of cancer stem cells (CSCs)-like cells in hepatocellular carcinoma (HCC). How CSCs interact with the tumor microenvironment and the adaptive immune system is unclear. Methods: We screened aggressive human HCC for macroH2A1 and CD44 CSC marker expression. We also knocked down (KD) macroH2A1 in HCC cells, and performed integrated transcriptomic and secretomic analyses. Results: Human HCC showed low macroH2A1 and high CD44 expression compared to control tissues. MacroH2A1 KD CSC-like cells transferred paracrinally their chemoresistant properties to parental HCC cells. MacroH2A1 KD conditioned media transcriptionally reprogrammed parental …

EXPRESSION0301 basic medicineLIVERAdaptive immune systemPOSTTRANSCRIPTIONAL CONTROLHepatocellular carcinomaMedicine (miscellaneous)PROGRESSIONHistone macroH2A1Research & Experimental MedicineCONTRIBUTES03 medical and health sciencesParacrine signalling0302 clinical medicineadaptive immune systemCancer stem cellCANCER STEM-CELLSmedicinechemoresistance.TRANSCRIPTIONIL-2 receptorneoplasmsPharmacology Toxicology and Pharmaceutics (miscellaneous)Tumor microenvironmentScience & Technologybiologyhistone macroH2A1CD44PROLIFERATIONchemoresistanceCancerFOXP3hepatocellular carcinomamedicine.diseaseAcquired immune systemdigestive system diseases3. Good healthCYTOKINE030104 developmental biologyMedicine Research & ExperimentalSENESCENCE030220 oncology & carcinogenesisCancer researchbiology.proteinLife Sciences & BiomedicineChemoresistance
researchProduct

Recent advances in 2D and 3D in vitro systems using primary hepatocytes, alternative hepatocyte sources and non-parenchymal liver cells and their use…

2013

This review encompasses the most important advances in liver functions and hepatotoxicity and analyzes which mechanisms can be studied in vitro. In a complex architecture of nested, zonated lobules, the liver consists of approximately 80 % hepatocytes and 20 % non-parenchymal cells, the latter being involved in a secondary phase that may dramatically aggravate the initial damage. Hepatotoxicity, as well as hepatic metabolism, is controlled by a set of nuclear receptors (including PXR, CAR, HNF-4α, FXR, LXR, SHP, VDR and PPAR) and signaling pathways. When isolating liver cells, some pathways are activated, e.g., the RAS/MEK/ERK pathway, whereas others are silenced (e.g. HNF-4α), resulting in…

MAPK/ERK pathwayHealth Toxicology and MutagenesisNF-KAPPA-BReceptors Cytoplasmic and NuclearReview ArticlePharmacologyToxicologyToxicogeneticsNon-parenchymal cells0302 clinical medicineInduced pluripotent stem cellANION-TRANSPORTING POLYPEPTIDECONSTITUTIVE ANDROSTANE RECEPTOR0303 health sciencesGeneral Medicine3. Good healthCell biologymedicine.anatomical_structureLiver030220 oncology & carcinogenesisHepatocyte[SDV.TOX]Life Sciences [q-bio]/ToxicologyInactivation MetabolicClearanceDILIStem cellPLURIPOTENT STEM-CELLSFARNESOID-X-RECEPTORSignal TransductionMechanisms of gene regulationARYL-HYDROCARBON RECEPTORCell signalingPharmacology and ToxicologyHEPATIC STELLATE CELLSBiology03 medical and health sciencesOrgan Culture TechniquesIn vivoCulture TechniquesToxicity TestsmedicineMathematical modeling.AnimalsHumansLiver X receptorDRUG-DRUG INTERACTIONS030304 developmental biologyCryopreservation[INFO.INFO-MO]Computer Science [cs]/Modeling and Simulation3D ModelsCoculture TechniquesHigh-Throughput Screening AssaysSALT EXPORT PUMPGene Expression RegulationHepatic stellate cellHepatocytes[SDV.SP.PHARMA]Life Sciences [q-bio]/Pharmaceutical sciences/PharmacologyPRIMARY RAT HEPATOCYTESMathematical modeling
researchProduct

Neurovascular EGFL7 regulates adult neurogenesis in the subventricular zone and thereby affects olfactory perception

2016

Adult neural stem cells reside in a specialized niche in the subventricular zone (SVZ). Throughout life they give rise to adult-born neurons in the olfactory bulb (OB), thus contributing to neural plasticity and pattern discrimination. Here, we show that the neurovascular protein EGFL7 is secreted by endothelial cells and neural stem cells (NSCs) of the SVZ to shape the vascular stem-cell niche. Loss of EGFL7 causes an accumulation of activated NSCs, which display enhanced activity and re-entry into the cell cycle. EGFL7 pushes activated NSCs towards quiescence and neuronal progeny towards differentiation. This is achieved by promoting Dll4-induced Notch signalling at the blood vessel-stem …

Male0301 basic medicineGeneral Physics and AstronomyNEURAL STEM-CELLSMOUSEMiceSUBEPENDYMAL ZONENeural Stem CellsLateral VentriclesLINEAGE PROGRESSIONBRAININ-VIVOMice KnockoutNeuronal PlasticityMultidisciplinaryCell CycleQNeurogenesisNICHEAnatomyNeural stem cellCell biologyAdult Stem Cellsmedicine.anatomical_structureSignal TransductionSTIMULATES NEUROGENESISEGF Family of ProteinsNeurogenesisScienceNotch signaling pathwaySubventricular zoneBiologyInhibitory postsynaptic potentialArticleGeneral Biochemistry Genetics and Molecular Biology03 medical and health sciencesNeuroplasticitymedicineBiological neural networkAnimalsCalcium-Binding ProteinsProteinsGeneral ChemistryOlfactory PerceptionENDOTHELIAL-CELLSnervous system diseasesOlfactory bulbMice Inbred C57BLSELF-RENEWAL030104 developmental biologynervous system
researchProduct

Biological properties of extracellular vesicles and their physiological functions

2015

The authors wish to thank Dr R Simpson and Dr D Taylor for critical reading of the manuscript and acknowledge the Horizon 2020 European Cooperation in Science and Technology programme and its support of our European Network on Microvesicles and Exosomes in Health & Disease (ME-HaD; BM1202 www.cost.eu/COST_Actions/bmbs/Actions/BM1202). In the past decade, extracellular vesicles (EVs) have been recognized as potent vehicles of intercellular communication, both in prokaryotes and eukaryotes. This is due to their capacity to transfer proteins, lipids and nucleic acids, thereby influencing various physiological and pathological functions of both recipient and parent cells. While intensive invest…

ProteomicsCellular distributionMATURE DENDRITIC CELLSReviewReview ArticleUrineEmbryo developmentMonocyteProtein processingVascular biologyFecesVesícules seminalsSYNCYTIOTROPHOBLAST MICROVILLOUS MEMBRANESCell selectionPregnancyT lymphocyteBileCELL-DERIVED EXOSOMESBiogenesisLung lavageUterus fluidInnate immunityMale genital systemlcsh:CytologyMicrovesicleOUTER-MEMBRANE VESICLESBlood clottingprokaryoteEukaryotaExtracellular vesicleRNA analysisCell biologyBloodCerebrospinal fluidLiver metabolismmicrovesicleMorphogenHumanNervous systemCell signalingBreast milkNatural killer cellFisiologiaExtracellular vesiclesExosomelcsh:QH573-671SalivaBiologyBiology and Life SciencesDNAPlantRNA transportCell functionMacrophageMolecular biologyPhysiologyMedizinProteomicsFACTOR PATHWAY INHIBITOReukaryoteProtein glycosylationExtracellular spaceTissue repairEspai extracel·lularReticulocyteSeminal plasmaMesenchymal stem cellAntigen presenting cellSeminal vesiclesNose mucusBiofilmNeutrophilMicroRNAPLANT-MICROBE INTERACTIONSLipidAmnion fluidProkaryotamicroparticleCell interactionCell transporteukaryote exosome extracellular vesicle microparticle microvesicle physiology prokaryoteBone mineralizationMicroorganismHistologyAdaptive immunityMembrane vesicleComputational biologyMembrane receptorBiologyStressCell communicationMast cellMESENCHYMAL STEM-CELLSHUMAN ENDOTHELIAL-CELLSexosomeCytokineSynovial fluidCell BiologyNonhumanIMMUNE-MODULATORY FEATURESReview articleDNA contentphysiologyRNAINTESTINAL EPITHELIAL-CELLSextracellular vesicleBody fluidLectinBiogenesis
researchProduct

Stem cell populations in the heart and the role of Isl1 positive cells

2013

Cardiac progenitor cells are multipotent stem cells isolated from both embryonic and adult hearts in several species and are able to differentiate at least into smooth muscle cells, endothelial cells and cardiomyocytes. The embryonic origin of these cells has not yet been demonstrated, but it has been suggested that these cells may derive from the first and secondary heart fields and from the neural crest. In the last decade, two diffe-rent populations of cardiac progenitor or stem cells have been identified and isolated, i.e., the Islet1 positive (Isl1+) and c-Kit positive (c-Kit+)/Stem Cell Antigen-1 positive (Sca-1+) cells. Until 2012, these two populations have been considered two separ…

lineagesHistologymuscleLIM-Homeodomain ProteinsBiophysicscardiac progenitor cellsheartBiologycardiac progenitor cells stem cells heart lineages biology muscle.stem cellsHumansProgenitor celllcsh:QH301-705.5Induced stem cellsViews and CommentsbiologySettore BIO/16 - Anatomia UmanaMyocardiumCell BiologyCell biologyEndothelial stem cellP19 celllcsh:Biology (General)Gene Expression RegulationMultipotent Stem CellAmniotic epithelial cellsImmunologycardiac progenitor cells stem-cells heart lineages biology muscle.Stem cellAdult stem cellTranscription Factors
researchProduct